

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

NPS-GSBPP-09-014

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

Software Hardware Asset Reuse Enterprise (SHARE)

Repository Framework: Related Work and Development Plan

19 August 2009

by

Jean Johnson, Research Assistant, and
Curtis Blais, Research Associate

Graduate School of Engineering and Applied Sciences

Naval Postgraduate School

Naval Postgraduate School
Monterey, California

Daniel T. Oliver Leonard A. Ferrari
President Provost

The Acquisition Chair, Graduate School of Business & Public Policy, Naval

Postgraduate School supported the funding of the research presented herein.

Reproduction of all or part of this report is authorized.

The report was prepared by:

Jean Johnson, Research Assistant
Graduate School of Engineering & Applied Sciences

Curtis Blais, Research Associate
Graduate School of Engineering & Applied Sciences

Reviewed by:

William R. Gates, Ph.D.
Dean, Graduate School of Business & Public Policy

Released by:

Karl van Bibber, Ph.D.
Vice President and
Dean of Research

- i -

REPORT DOCUMENTATION PAGE

Form approved

OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
19 August 2009

3. REPORT TYPE AND DATES COVERED
1 October 2007 through 30 September 2008

4. TITLE AND SUBTITLE
Software Hardware Asset Reuse Enterprise (SHARE) Repository Framework: Related
Work and Development Plan

5. FUNDING N/A

6. AUTHOR (S)
Jean Johnson and Curtis Blais

7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS (ES)
NAVAL POSTGRADUATE SCHOOL
GRADUATE SCHOOL OF BUSINESS AND PUBLIC POLICY
555 DYER ROAD
MONTEREY, CA 93943-5103

8. PERFORMING ORGANIZATION REPORT
NUMBER
NPS-GSBPP-09-014

9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS (ES)

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words.)
In August 2006, Program Executive Officer, Integrated Warfare Systems (PEO-IWS), established the Software, Hardware Asset

Reuse Enterprise (SHARE) repository to enable the reuse of combat system software and related assets. A description of SHARE and the
requirements for a component specification and ontology supporting this repository are available in Johnson (2007). The Naval
Postgraduate School (NPS) is tasked to develop this component specification and ontology for the SHARE repository. This report gives
our vision of the component specification and ontology, while providing a brief survey of initiatives and technologies relevant to desired
repository capabilities. We then describe the development approach and initial design of the component specification and ontology. We
conclude with recommended next steps for continuing development of the repository capabilities.
14. SUBJECT TERMS
Software Reuse, Software repository, Component Specification, Ontology

15. NUMBER OF
PAGES
75

 16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT: UNCLASSIFIED

18. SECURITY CLASSIFICATION OF
THIS PAGE: UNCLASSIFIED

19. SECURITY CLASSIFICATION OF
ABSTRACT: UNCLASSIFIED

20. LIMITATION OF
ABSTRACT: UU

- ii -

THIS PAGE INTENTIONALLY LEFT BLANK

- iii -

Abstract

In August 2006, Program Executive Officer, Integrated Warfare Systems

(PEO-IWS), established the Software, Hardware Asset Reuse Enterprise (SHARE)

repository to enable the reuse of combat system software and related assets. A

description of SHARE and the requirements for a component specification and

ontology supporting this repository are available in Johnson (2007). The Naval

Postgraduate School (NPS) is tasked to develop this component specification and

ontology for the SHARE repository. This report gives our vision of the component

specification and ontology, while providing a brief survey of initiatives and

technologies relevant to desired repository capabilities. We then describe the

development approach and initial design of the component specification and

ontology. We conclude with recommended next steps for continuing development of

the repository capabilities.

Keywords: Keywords: Software Reuse, Software repository, Component

Specification, Ontology

- iv -

THIS PAGE INTENTIONALLY LEFT BLANK

- v -

Acknowledgements

The authors would like to acknowledge Dr. Mikhail Auguston for his

contributions to the vision for the component specification and ontology. We would

also like to thank the sponsor, Mr. Nick Guertin, PEO IWS 7B, the SHARE program

manager, Ms. Barbara Doyal, and Mr. Mark Wessman for their guidance throughout

this research.

- vi -

THIS PAGE INTENTIONALLY LEFT BLANK

- vii -

About the Authors

Jean Johnson is a research assistant in the Naval Postgraduate School
Systems Engineering Department. She coordinates a program to develop Modeling
and Simulation curriculum for DoD Acquisition workforce personnel and performs
research for the PEO IWS SHARE program. Previously, Ms. Johnson held various
positions supporting NAVSEA’s Warfare Systems Engineering Division. She is a US
Navy active and reserve veteran and continues her Navy affiliation in the Individual
Ready Reserve. Ms. Johnson holds a ME in Operations Research and Systems
Analysis and a BS in Applied Mathematics from Old Dominion University and is
currently pursuing her PhD in Software Engineering at NPS.

Jean M. Johnson
Systems Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5000
Tel: 831-656-2956
Fax: (831) 656-3219
E-mail: jmjohnso@nps.edu

Curtis Blais is a research associate in the Naval Postgraduate School
Modeling, Virtual Environments, and Simulation (MOVES) Institute. His research
interests include application of Web-based technologies to improve interoperability
of C2 systems and M&S systems. He is contributing to metadata design efforts for
the SHARE program, the Department of Defense (DoD) M&S Community of Interest
Discovery Metadata Specification, M&S Catalog, and standardized DoD Verification,
Validation, and Accreditation (VV&A) documentation, as well as international
standardization efforts for the Military Scenario Definition Language and the
Coalition Battle Management Language. Mr. Blais hold BS and MS degrees in
Mathematics from the University of Notre Dame and is a PhD candidate in the
MOVES program.

Curtis Blais
Modeling, Virtual Environments and Simulation Institute
Naval Postgraduate School
Monterey, CA 93943-5000
Tel: 831-656-3215
Fax: (831) 656-7599
E-mail: clblais@nps.edu

- viii -

THIS PAGE INTENTIONALLY LEFT BLANK

- ix -

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

 Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of
the Navy, the Department of Defense, or the Federal Government.

NPS-GSBPP-09-014

Software Hardware Asset Reuse Enterprise (SHARE)

Repository Framework: Related Work and Development Plan

19 August 2009

by

Jean Johnson, Research Assistant, and
Curtis Blais, Research Associate

Graduate School of Engineering and Applied Sciences

Naval Postgraduate School

- x -

THIS PAGE INTENTIONALLY LEFT BLANK

- xi -

Table of Contents

Glossary of Abbreviations ..xiii

I. Introduction ..1

A. Background ...1

B. Scope ..2

C. Purpose ...2

II. Conceptual Vision for the Software Repository Framework3

A. Introduction..3

B. Repositories Today..3

C. Improved Search and Discovery Capabilities4

III. Framework Overview ...7

A. Component Specification...7

B. Ontology ..8

C. SHARE Framework Approach...9

IV. Metadata Initiatives ..11

A. Introduction..11

B. Web-based Technologies..11

C. Data Sharing Policies in the US Government................................13

D. Commercial Metadata Practices..19

E. Summary ...21

V. Software Behavior Representation...23

A. Introduction..23

B. Interface Descriptions..24

- xii -

C. Modeling Software Behavior..30

D. Summary ...35

VI. Relationships Framework (Ontology)...37

A. Introduction..37

B. Semantic Web Techniques..38

C. Semantic Search ...41

D. Summary ...42

VII. Share Framework Development Approach..43

A. Introduction..43

B. SHARE Metadata ..43

C. SHARE Software Behavior Representation...................................44

D. SHARE Relationship Framework (Ontology).................................44

VIII. Future Work ..45

IX. Summary...47

List of References...49

Initial Distribution List ..55

- xiii -

Glossary of Abbreviations

ADL Architecture Description Language

ASW Anti-Submarine Warfare

CIEL Common Information Element List

CIO Chief Information Officer

COAL Common Operational Activities List

COI Community of Interest

COM Component Object Model

CPAN Comprehensive Perl Archive Network

CSFL Common Systems Function List

DDMS DoD Discovery Metadata Specification

DISA Defense Information Systems Agency

DL Description Logic

DMS Discovery Metadata Specification

DoD Department of Defense

GIG Global Information Grid

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDL Interface Definition Language

IRI International Resource Identifier

ISO International Organization for Standardization

IWS Integrated Warfare Systems

LCS Littoral Combat Ship

LSI Latent Semantic Indexing

- xiv -

M&S Modeling and Simulation

MDA Maritime Domain Awareness; also Model Driven Architecture

MDR Metadata Registry

MOF Meta Object Facility

MSC Modeling and Simulation Community of Interest

NCW Net-Centric Warfare

NDA Non-Disclosure Agreement

NPS Naval Postgraduate School

OA Open Architecture

OCL Object Constraint Language

OMG Object Management Group

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

PEO Program Executive Office

RAS Reusable Asset Specification

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RIF Rule Interchange Format

SBA Simulation-Based Acquisition

SHARE Software Hardware Asset Reuse Enterprise

SIAP Single Integrated Air Picture

SIPRNET Secret Internet Protocol Router Network

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

- xv -

SPARQL SPARQL Protocol and RDF Query Language

SSDS Ship Self Defense System

UDDI Universal Description, Discovery, and Integration

UML Unified Modeling Language

URI Universal Resource Identifier

URL Universal Resource Locator

USW Undersea Warfare

W3C World Wide Web Consortium

WS-BPEL Web Services Business Process Execution Language

WSDL Web Services Description Language

WS-I Web Services Interoperability

XMI XML Metadata Interchange

XML Extensible Markup Language

- xvi -

THIS PAGE INTENTIONALLY LEFT BLANK

- 1 -

I. Introduction

A. Background
In August 2006, the Program Executive Officer of Integrated Warfare Systems

(PEO IWS) established the Software, Hardware Asset Reuse Enterprise (SHARE), a

library of combat system software and related assets, for use by eligible contractors

(both prime contractors and subcontractors) for developing or suggesting

improvements to Navy Surface Warfare Systems. The SHARE repository is

presently being populated. As of January 2008, 62 assets containing 18,017

artifacts from the Aegis, Ship Self Defense System (SSDS), Littoral Combat Ship

(LCS), DDG-1000, and Single Integrated Air Picture (SIAP) programs are available

in the SHARE library. PEO-IWS encourages all current Navy contractors and

potential Navy contractors to register for access to the SHARE library to discover the

assets it presently contains, as well as to contribute assets that may be useful to the

Navy and its contracting community in the future.1 An unclassified site

(https://viewnet.nswc.navy.mil) provides a mechanism to discover available library

materials within SHARE, as those materials are populated. The site also hosts the

license agreement and Non-Disclosure Agreement (NDA) required for obtaining

library materials. Library materials are provided either online through access to the

appropriate portion of the SHARE web site (classified or unclassified) or via delivery

of physical media. The registration process for the classified portion of the site over

SIPRNET (https://viewnet.nswcdd.navy.smil.mil) is the same as the unclassified

portion above, except no digital certificate is required. The SHARE repository is

currently being updated to Version 1.3 (March 2008), which incorporates several

new enhancements, including updated metadata and an improved asset submission

process. A more complete description of SHARE and the requirements for a

semantic framework consisting of a component (repository asset) specification and

ontology that will support this repository are available in Johnson (2007).

1 Organizations interested in registering for access to the library should visit and complete an online
registration form at https://viewnet.nswc.navy.mil

- 2 -

B. Scope
The Naval Postgraduate School (NPS) is tasked to develop an initial

component specification and ontology for the SHARE software2 repository. The

component specification will describe the artifacts contained in the repository in

sufficient detail to aid a repository user in determining if the artifact is worth

retrieving. The ontology will provide contextual semantics describing relationships

among items in the repository to aid in associating artifacts with user needs. The

component specification and ontology will comprise a rich structural and semantic

framework for SHARE that will enable multiple kinds of search and discovery

techniques. The goal is to enable the development of different types of tools to

improve the usefulness of SHARE.

C. Purpose
The purpose of this report is to describe relevant existing technologies to the

SHARE framework and to identify their utility in the intended framework development

approach. We begin by providing a description of the intended repository

framework, and then we discuss existing technologies and initiatives that may be

advantageous to its development. Finally, we share our proposed approach for the

completion of the framework development project.

2 While the SHARE repository is intended for information on both hardware and software assets, this
initial tasking is limited to a software asset scope. The goal of the research, however, is for technical
approaches that are developed for software to be readily adaptable to descriptions of hardware
assets in the repository.

- 3 -

II. Conceptual Vision for the Software Repository Framework

A. Introduction
In this section, we discuss typical current repository practices, outline our

vision for improving upon them, and describe our overall approach for the SHARE

research project.

B. Repositories Today
Software repositories today tend to be organized to support keyword

searches over broad categories of software types. They vary greatly in the amount

of information (metadata) available for each artifact in the repository.

1. SourceForge
One of the most popular online open source repositories, SourceForge is both

a software repository and a project management tool. The project management

portion of the site requires registration of a project and enables coordination of

configuration management, task management, and other project communication

concerns for development projects. The repository contains downloadable software

from the projects— some are free and some are provided at a cost.

The SourceForge repository enables essentially two different ways to search.

First, users can browse the repository by clicking through categorizations of different

types of software and then refine the search by filtering for different program

aspects, such as specific program language or operating system. Second, a

keyword search over the metadata within a particular category is possible. The

metadata in SourceForge is quite exhaustive. This is due, in part, to the

convenience of drawing the metadata from the project information at the same

location.

2. Comprehensive Perl Archive Network (CPAN)
The Comprehensive Perl Archive Network (CPAN) repository, a successful

and highly active resource for Perl developers, hosts similar search capabilities to

- 4 -

SourceForge. Items in the repository are grouped by type or function, and are then

browsable within those categories. A keyword search over metadata is also

possible. The metadata for CPAN is less expansive, but possibly more focused than

the SourceForge repository data. The CPAN site also includes customer reviews of

items in the repository.

As described, these examples of current repositories do not support all of the

types of searches we would like to enable. The following section describes in more

detail a few of our ideas for new search capabilities.

C. Improved Search and Discovery Capabilities
In addition to typical types of searches (keywords, popularity rankings), we

envision a graphical user interface that enables navigation of repository assets

depending on the users’ interests. This requires an interface that allows users to

project their context on the search mechanisms. In other words, the users bring

particular information needs and goals based on the problem they are trying to

solve. The interface needs to have natural mechanisms to enable users to pose

inquiries that fit readily with their views of the problem space. For example, users

may seek particular functionality best obtained through a functional organization of

the information in the repository. Or, users may seek particular artifacts best

obtained through a document resource organization of the information. Or, users

may seek information on certain testing methodologies that have been applied so

that a work activity organization of the information would best apply. The challenge

in designing the framework for the software repository is devising initial sets of such

taxonomic descriptions of the assets while creating flexibility for future introduction of

additional and diverse organizational views (profiles or templates) of the information

as user needs and repository utility grow.

1. Fish Eye Graph
One example of the type of tool that will be supported by the framework is a

fish-eye graph (Sarkar & Brown, 1993). This is a visualization tool that has not been

used, to date, to aid in navigation of repository contents. Fish-eye graphs display

- 5 -

objects of interest to users, along with the relationships the objects have with other

items, as shown in Figure 1. As the relationships interesting to users are explored,

the graph highlights the item and brings it to the front of the display. Users can then

weed out uninteresting items by removing from view the relationships that are not

important. This type of search results in a single or small grouping of items that

users have found interesting with supporting information available by mouse-click.

Figure 1. Example Fish-eye Graph
(Sarkar & Brown, 1993)

2. Semantic Search
Current repository metadata schemas do not address issues of language

ambiguity. Rather, they assume that keywords provided by the metadata will match

identically to the words inserted by users. By providing a framework of related

concepts in which to place the artifacts, a search tool can be designed to navigate

for artifacts in such a way that the exact words initially used to describe artifacts

need not be known.

A related ongoing NPS research project, titled ReSEARCH, focuses on

solving these types of issues for SHARE. This work intends to enhance current

- 6 -

search mechanisms, principally Latent Semantic Indexing (LSI), by employing word-

sense relationships provided in the extensive WordNet lexical database. However,

this body of work lacks the domain-specific lexicon found in focused endeavors,

such as Navy combat systems. Formalized semantic descriptions in the SHARE

component specification and ontology will further enhance ReSEARCH capabilities

to produce highly relevant search findings for users of the SHARE repository.

3. Model-based Search
A third type of search we have envisioned is based on a user-constructed

model of the problem the user is trying to solve. The user interface for the repository

can provide the capability to assist users in building the model of a desired system

architecture using a standardized representation scheme (e.g., Unified Modeling

Language), and the search can then return possible existing solutions for portions of

the system and demonstrate where gaps likely exist. Model-based search has

similarities to the semantic search concept described above—taxonomic and

ontological descriptions of systems, system components, lifecycle phases,

development artifacts, usage, and other concepts prominent in the software-

hardware domain of SHARE provide structural information that can greatly facilitate

search of available assets.

The metadata collected in current repositories do not support these types of

advanced discovery tools. In the next section, we provide an overview of our

approach for developing a repository that will enable these types of search

capabilities.

- 7 -

III. Framework Overview

To enable the types of tools we envision, we must create a richer semantic

framework for the repository. The framework will be composed of two parts—the

component specification and the ontology.

A. Component Specification
The component specification is a description or model of the items in the

repository. For our efforts we focus on two aspects of the component specification:

the “typical” metadata and software behavior.

1. Metadata
The metadata for each artifact should incorporate all necessary data for

discovery and implementation. The metadata will both aid repository users in

determining if the item is suited for their use and will provide information about how

to use the asset when it is retrieved. We refer to this as “standard” or “typical”

metadata since there are many existing examples of metadata that we can use to

develop the metadata for SHARE. Some of these examples are described in section

IV.

2. Software Behavior
The metadata for many current repositories, such as those described earlier,

fail to capture a searchable representation of the functionality of the items outside of

general categories of functionality (e.g., Archiving Compression Conversion, Control

Flow Utilities, Graphics, Security) and text-based search of code descriptions.

Unlike current practice, the SHARE component specification will consist of both

typical metadata and a behavioral model of the component. Since this piece of the

component specification is not commonly incorporated into repositories in a

standardized manner, we feel it is a specific focus area to identify the appropriate

representation mechanisms for software behavior in the repository context. A

discussion of relevant existing representations of software behavior is presented in

section V.

- 8 -

B. Ontology
The second part of the framework includes descriptions of the relationships of

the components, which form a contextual model of the repository items representing

a particular perspective that can more closely match a user’s problem context.

These relationships may include the component’s use/role in existing systems, its

mapping to reference or domain architectures, its utility in various software

development lifecycle phases, and other types of relationships we expect to discover

during the research. Consider the example relationships among artifacts shown in

Figure 2. Suppose we are inserting a requirements document for a particular

component into the repository. This artifact may have been originally developed for

System A in the figure. The item’s relation to the rest of the original system provides

the context for one dimension of the repository framework. If this item was then

reused to fulfill some requirements of System B, its location in that model provides a

second dimension. Additionally, the requirements document will map to some

taxonomy of artifacts that are relevant for particular phases of the product lifecycle.

Finally, the component it describes may also have a place in some domain-specific

reference architecture. All of these relationships provide contextual information

about the artifact that can be exploited to enable sophisticated search and discovery

methods described in section II.C above.

- 9 -

SystemSystem AA SystemSystem BB

DomainDomain--relevantrelevant
diagramdiagram

Lifecycle ArtifactLifecycle Artifact
TaxonomyTaxonomy

SystemSystem AA SystemSystem BB

DomainDomain--relevantrelevant
diagramdiagram

Lifecycle ArtifactLifecycle Artifact
TaxonomyTaxonomy

Figure 2. Artifact Relationships

For this project, an appropriate representation of component context will be

identified and the relationships defined. This will enable navigation of the repository

based on the contextual information provided in the ontology. Potential technologies

considered for use in the ontology representation are discussed in section VI.

C. SHARE Framework Approach
Based on this vision then, the project team has identified three focus areas for

developing the framework for the SHARE repository:

1. “Typical” metadata for artifacts

2. A suitable representation of software behavior

3. Framework relationships (ontology)

The current research project will focus on building each of these items for the

SHARE repository. Follow-on work will be required to implement the framework in a

tool suite that will enable the search capabilities described above. This and other

suggested follow-on work is described in the Future Work section of this report.

- 10 -

In the next three sections, we investigate current initiatives and technologies

that can be used in the development of each of these focus areas and evaluate the

applicability for SHARE. Based on this assessment, we then describe our intended

approach for developing each of these items in section VII.

- 11 -

IV. Metadata Initiatives

A. Introduction
Many researchers and developers are working on specification of metadata to

describe assets and resources in various repositories. For the SHARE framework,

we do not expect to create any unique approaches to developing metadata or that

we will develop any fundamentally different metadata set. However, we intend to

use the metadata descriptions to support navigation-by-context search, in addition to

being able to do more traditional types of searches based on keywords, text-

analysis, and popularity.

In this section, we discuss various initiatives that will guide the SHARE

metadata development.

B. Web-based Technologies
The World Wide Web has experienced unprecedented growth over the past

20 years, fueled largely by the use of Hypertext Markup Language (HTML),

Hypertext Transfer Protocol (HTTP), and Universal Resource Identifiers (URIs) as

simplistic mechanisms for putting information into document files, posting and

accessing those files, and linking those files, respectively. However, HTML primarily

described how the information should be displayed in browser software, rather than

providing clear descriptions of the content contained in the document. To address

this shortcoming, the World Wide Web Consortium (W3C) created the Extensible

Markup Language (XML) as a standard way to create and apply markup to the

content of Web documents to make the content more readily accessible by software.

While initial application of XML made description of Web content much more

precise, it largely described content in a structured, syntactic manner. As the

demand for greater automation in accessing and processing Web content continued

to rise, principal designers and researchers on the Web created a new vision, called

the Semantic Web.

- 12 -

The Semantic Web is Tim Berners-Lee’s vision of the World Wide Web

(Berners-Lee et al., 2001) in which the vast stores of information become meaningful

to computers and where “the explicit representation of the semantics underlying

data, programs, pages, and other Web resources will enable a knowledge-based

Web that provides a qualitatively new level of service” (Daconta et al., 2003, p. xxi).

The Semantic Web is an extension of the World Wide Web in which information is

given semantically-rich descriptions that enable automated processing by software.

The W3C has created additional layers of markup, building on the base of XML, to

provide description of the semantics of the information. The Semantic Web is an

evolution of the current Web, built from the foundation of open standards on which

the Web is built. Building blocks of the Semantic Web are shown in Figure 3.

Below, we provide a brief description of the base layers of the Semantic Web stack

(URI/IRI and XML) and highlight their relevance to the SHARE metadata

development. In later sections of this report, we briefly describe the other

components of the Semantic Web stack and discuss their relevance to the other

parts in the design of the SHARE repository framework.

Figure 3. Principal building blocks of the Semantic Web Stack (W3C, 1994)

- 13 -

1. Uniform Resource Identifier / International Resource Identifier (URI/IRI)
The URI/IRI is an identification scheme for resources on the Web. The most

common form is the Universal Resource Locator (URL) (a form of URI) generally

used for links to documents in the HTML. Metadata records and library materials

stored in the SHARE repository will likely have URIs assigned to facilitate discovery

and access of those files using Web-based practices. We will also see in later

discussion the use of URIs to identify abstract resources in the expression of

assertions and relationships.

2. Extensible Markup Language (XML)
As introduced earlier, XML is a standard for defining markup languages.

Markup languages enable information content to be self-describing for human and

machine processing. The XML Schema language provides a capability to define the

structure and content of XML documents that can be validated against the schema

definition. For broadest utility, aspects of the SHARE component specification will be

expressed in XML, beginning with development of an XML Schema to formalize the

current set of metadata recorded to describe each asset in the repository.

C. Data Sharing Policies in the US Government
Recent policy decisions are driving significant efforts to revolutionize data

sharing across the US government. Many of these are the result of presidential

directives addressing protection of critical infrastructure and the ability to share

information across agencies in times of national disaster. Various agencies may

desire information on certain capabilities possessed by the military (and National

Guard) for application in times of need (e.g., rescue and relief operations in national

disasters) or in support of civilian crime prevention (e.g., counter-drug operations

and counter-terrorism operations). Useful information may relate to platforms, air lift

capacity, intelligence, surveillance, and reconnaissance capabilities, some of which

may be available in the SHARE repository.

In the US Department of Defense, including DoD intelligence agencies and

functions, the guiding document for information sharing is the Net-Centric Data

- 14 -

Sharing Strategy (DoD Chief Information Officer, 2003). The document defines net-

centricity as “the realization of a networked environment, including infrastructure,

systems, processes, and people, that enables a completely different approach to

warfighting and business operations” (DoD Chief Information Officer, 2003, p. 1).

The network foundation is the Global Information Grid, “the globally interconnected,

end-to-end set of information capabilities, associated processes, and personnel for

collecting, processing, storing, disseminating, and managing information on demand

to warfighters, defense policymakers, and support personnel” (DoD Chief

Information Officer, 2003, p. 1). Data assets addressed by the strategy include

system files, databases, documents, official electronic records, images, audio files,

web sites, and data access services. Users and applications can search for and

“pull” data as needed, or they can receive alerts when data to which they have

subscribed is updated or changed (publish/subscribe). The goals of the strategy are

to make data (DoD Chief Information Officer, 2003, p. 10):

� visible—users and applications can discovery the data assets

� accessible—users and applications can obtain the data assets

� institutionalized—data approaches are incorporated into DoD process
and practices

� understandable—users and applications can comprehend the data,
both structurally and semantically, to address specific needs

� trusted—users and applications can determine the authority of the
source of the data assets

� interoperable—metadata is available to allow mediation or translation
of data to support many-to-many exchanges of data

� responsive to user needs—mechanisms for improvement through
continual feedback are supported to address particular perspectives of
data users

The design of the repository framework should provide or support

mechanisms that address each of these goals. In this respect, the data sharing

goals help to scope and guide the design and development efforts.

- 15 -

The data sharing strategy is being addressed through (1) self-organized

Communities of Interest (COIs) for identification and maintenance of data; (2)

metadata describing the data assets; and (3) GIG Enterprise Services supporting

data tagging, sharing, searching, and retrieval. In the Department of the Navy,

numerous COIs have formed in recent years, including Anti-Submarine Warfare

(ASW), Undersea Warfare XML (usw-xml), Maritime Domain Awareness (MDA),

Mine Warfare, and Service Oriented Architecture (SOA) Transformation Group.

Navy representatives play a strong role in the DoD Modeling and Simulation (M&S

COI), among others. There is a proposed COI for Software Asset Management

being organized by the Defense Information Systems Agency (DISA) that may be

pertinent to SHARE development as well.

In the data sharing strategy, data assets are described by metadata to

support discovery by users and applications. A standard set of metadata for

discovering distributed resources is provided in the DoD Discovery Metadata

Specification (DDMS) (Deputy Assistant Secretary of Defense, 2007). The DDMS

states:

Data assets available on the Enterprise must be described with metadata,

using the information elements defined in this document to permit discovery

through the Enterprise Discovery capability. The DDMS defines a core set of

elements that must be used to describe assets made visible to the Enterprise.

Users (human and systems) that search the Enterprise will discover data

assets that have been tagged and entered into catalogs or repositories that

respond to search queries specified in terms of DDMS entries. (Deputy

Assistant Secretary of Defense, 2007, pp. 16-17)

The SHARE repository, as with other repository efforts, can readily address

this directive by ensuring that sufficient metadata are provided in descriptions of

assets to allow generation of at least the minimum required set of metadata

specified in the DDMS.

The concept for use of DDMS for asset discovery is shown in Figure 4.

- 16 -

The requirement to support DDMS does not preclude using more

sophisticated and domain-centric metadata to describe assets in the SHARE

repository. Nor does the DDMS standard preclude development of more

sophisticated search mechanisms for repositories like SHARE. It simply defines a

minimum level of standardized metadata that will be supported by GIG Enterprise

Services. In fact, the DDMS design reflects a combination of a core layer of

metadata with an extensible layer providing COI/domain-specific metadata, as

shown in Figure 5. The Summary Content Category Set of the DDMS is specifically

aimed at providing “content-related” details about data assets. Content metadata

provides topics, keywords, context, and other content-related information; gives

users and applications insight into the meaning and context of the data; and

provides a basis for search engines to perform searches for data assets that

address specific topics (DoD Chief Information Officer, 2003, p. 15).

Enterprise
Discovery
Capability

File

Database

Service

Metadata
Catalog A

DDMS - compliant
Metadata Describing

File

DDMS - compliant
Metadata Describing

Database

DDMS - compliant
Metadata Describing

Service Metadata
Catalog B

Application

Application

Application

COI Shared Spaces

External Shared Spaces

Discovery
Queries

Assets are ‘advertised’
by describing themselves in terms of

DDMS metadata elements…

…assets are ‘discovered’
by the Enterprise Discovery capability

that performs searches against
DDMS metadata catalog entries

Metadata and links to asset
are entered into Metadata Catalogs

Described
By

Described
By

Described
By

Discovery Interface
Specification (future)

Enterprise
Discovery
Capability

File

Database

Service

Metadata
Catalog A

DDMS - compliant
Metadata Describing

File

DDMS - compliant
Metadata Describing

Database

DDMS - compliant
Metadata Describing

Service Metadata
Catalog B

Application

Application

Application

COI Shared Spaces

External Shared Spaces

Discovery
Queries

Assets are ‘advertised’
by describing themselves in terms of

DDMS metadata elements…

…assets are ‘discovered’
by the Enterprise Discovery capability

that performs searches against
DDMS metadata catalog entries

Metadata and links to asset
are entered into Metadata Catalogs

Described
By

Described
By

Described
By

Enterprise
Discovery
Capability

File

Database

Service

Metadata
Catalog A

DDMS - compliant
Metadata Describing

 the File

DDMS - compliant
Metadata Describing

the Database

DDMS - compliant
Metadata Describing

the Service Metadata
Catalog B

System

End-User Ap

Application

COI Shared Spaces

External Shared Spaces

Discovery
Queries

Assets are ‘advertised’
by describing themselves in terms of

DDMS metadata elements…

…assets are ‘discovered’
by the Enterprise Discovery capability

that performs searches against
DDMS metadata catalog entries

Metadata and links to data assets
are entered into Metadata Catalogs

Described
By

Described
By

Described
By

Discovery Interface
Specification (future)

Figure 4. DDMS Usage Concept
(Deputy Assistant Secretary of Defense, 2007, p. 19)

The DoD Modeling and Simulation (M&S) COI is actively defining metadata

for discovery of assets. This group recently published an initial DoD M&S Discovery

Metadata Specification (SimVentions, 2008) built upon the information requirements

- 17 -

of the DDMS. It is interesting to note that M&S resources will likely become an

important subset of the SHARE repository. Increasingly, system development

includes application of modeling and simulation for proof of principle analyses,

testing, and training. Policies have promoted Simulation Based Acquisition (SBA) for

many years. These resources represent significant investments that can potentially

be reused in support of future systems. In order to ensure compatibility of SHARE

with the M&S community and DDMS metadata initiatives, we will ensure that the

SHARE component specification framework also supports generation of discovery

metadata sufficient to meet their broader requirements.

+

COI/Domain Specific
Descriptors

Provides ability to define
mission-specific metadata

elements

Can extend any of the core
layers as needed.

Extensible Layer

Security Descriptors

Summary Content Descriptors

Format Descriptors

Resource Descriptors

Core Layer

+

COI/Domain Specific
Categories

Provides ability to define
mission-specific metadata

elements

Can extend any of the core
sets, as needed.

Extensible Layer

Security Descriptors

Summary Content Descriptors

Format Descriptors

Resource Descriptors

Security Category Set

Summary Content Category Set

Format Category Set

Resource Category Set

Core Layer

Figure 5. DDMS Logical Model Consisting of a Core Layer and a COI/Domain
Specific Extensible Layer

(Defense Assistant Secretary of Defense, 2007, p. 21)

The GIG will provide a number of core enterprise services, including

Discovery, Messaging, User Assistant, Information Assurance / Security, Enterprise

Service Management, Storage, Mediation, Collaboration, and Application. As these

GIG services become available, it will be advantageous to adapt the SHARE

architecture to employ these services. While using the common infrastructure, this

will also open the SHARE content to the broad DoD community through the

standardized practices.

- 18 -

GIG Enterprise Services also include the DoD Metadata Registry (MDR). This

registry, based on the International Organization for Standardization (ISO) 11179

specification for metadata registries, is available throughout the Enterprise. The

Registry represents a “one-stop shop” for developer data needs and is a key

component in achieving the Department’s interoperability goals:

All document formats, interface definitions, and exchange models used by

systems will be stored in the DoD Metadata Registry. Developers can discover these

metadata assets and utilize them to read, write, or exchange data that is made

available throughout the Enterprise. All programs and COIs have a responsibility to

support interoperability through active participation in the DoD Metadata Registry.

The DoD Metadata Registry will provide capabilities to further support

interoperability through the use of translation and mediation services and for the

sharing and reuse of processes.” (DoD CIO, 2003, p. 8)

The Net-Centric Data Sharing Strategy directs COIs to take the lead in

establishing COI-specific metadata structures, defining community ontologies,

cataloging data and metadata, and having members post data. A community

ontology “provides the data categorization, thesaurus, key words, and/or taxonomy”

that can be used to “increase semantic understanding and interoperability of the

community data” (DoD Chief Information Officer, 2003, pp. 5-6). Taxonomies

“enhance discovery by providing a hierarchical means of searching for data while

providing users and applications with additional insights about data assets by

indicating their placement among other data assets” (DoD Chief Information Officer,

2003, p. 15). Furthermore, COI-developed vocabularies will define terms used in

describing data assets, and the thesauruses will identify related terms to assist

translation services. As we will see, the defined vocabularies, taxonomies, and

ontologies will serve an important role in enhanced asset search and discovery in

the SHARE repository. We anticipate posting schemas, taxonomies, and ontologies

developed for the SHARE repository framework to the MDR to support community

information sharing and data mediation.

- 19 -

D. Commercial Metadata Practices
Outside of the DoD, there are many additional metadata practices from which

we can learn. All existing repositories have some sort of metadata schema, whether

well defined or not. Also, there are some specific efforts focused on the

development of metadata standards for use in software repositories. Some

examples of these are discussed here.

1. Existing Repository Metadata
As previously discussed, open source repositories such as SourceForge and

CPAN have a metadata set for describing the assets they contain. Unfortunately

these schemas are not often published. However, they can be somewhat derived by

looking at the available information for each of the items in the repository. As an

example, see the SourceForge and CPAN metadata sets derived in Figure 6.

For SHARE metadata development, these existing examples of metadata will

be used as a reference when the metadata schema is developed. Existing metadata

sets will be used to trigger the evaluation of items that could be included that were

not originally considered. The goal is not to merge all existing sets of metadata but

to assess the relevance of existing data sets for SHARE and include any appropriate

items.

- 20 -

SourceForge
Name
Short Description
Rank
Activity
Date registered
Date of last file update
Number of downloads
Number of Services/members
Topics
User Interface
Translations (languages supported)
Programming languages
Operating Systems
License Information
Intended Audience
Development Status
Database Environment

CPAN
Name
Synopsis
Requires
Exports
Description
Methods
Class Variables
Diagnostics
Bugs
Author
License information
See also

Figure 6. Example Metadata from SourceForge and CPAN

2. Object Management Group Reusable Asset Specification
The Object Management Group (OMG) created the Reusable Asset

Specification (RAS) to standardize the packaging of software assets. The RAS

describes required and optional classes, as well as required and optional attributes,

for packaging software assets. The specification is depicted as Universal Modeling

Language (UML) models which are translated into XML Schema and Meta-Object

Facility (MOF) / Extensible Metadata Interchange (XMI) XML Schema.

In the RAS, artifacts are defined as “any work products from the software

development lifecycle,” and assets are a grouping of artifacts which “provide a

solution to a problem for a given context” (Object Management Group, 2005, p. 7).

Accordingly, the RAS describes an approach for packaging artifacts into an asset

using a manifest file, also an XML document.

It is worth noting that these definitions of artifact and asset are similar to those

definitions adopted by the Navy Open Architecture (OA) program. However, while

the RAS focuses on asset discovery, we believe it is desirable to enable discovery of

these pre-packaged assets as well as user-defined assets. After all, when inserting

items into a software repository it is not likely that every desired configuration of

- 21 -

artifacts into assets can be determined ahead of time. Rather, it is more likely they

would be determined at search time. This is because the ability of a group of

artifacts to “provide a solution to a problem” will depend on the needs of the

searcher. For example, a requirements document (an artifact) could be incorporated

into several different types of assets depending on whether the problem at hand

pertains to developing requirements documents for similar systems or to understand

a particular system completely. If the former, the desired asset may be a package of

similar requirements documents. If the latter, the desired asset may be the complete

set of available artifacts associated with a particular system, including requirements

documents, code, test cases, etc.

It is therefore our intention to apply metadata descriptions to artifacts, so that

assets can be determined by the searchers needs. This does not preclude the pre-

packaging of artifacts into assets to solve common problems. We envision the

capability for searchers to discover a problem solution by either locating a

prepackaged asset, or by building an asset from artifacts they believe are

necessary.

Because of this distinction, there are significant portions of the RAS that will

not be relevant in developing the appropriate data schema for SHARE. Additionally,

many of the RAS attributes are only applicable for certain types of assets. We

propose to create metadata that can be tailored to the different artifact types. This

will result in one core set of metadata for all artifacts and additional fields required

depending on the type of artifact being described.

E. Summary
Several patterns of use of metadata for describing software assets are

prevalent in government and industry. Starting with the current descriptions in the

SHARE repository, we will apply best practices to formalize descriptions to create

the foundation for the repository framework.

- 22 -

THIS PAGE INTENTIONALLY LEFT BLANK

- 23 -

V. Software Behavior Representation

A. Introduction
Repositories today tend to capture software behavior as key words describing

a general functional area or as a free text description field in the metadata. This

type of description can be helpful for aiding users to determine if the item will be

useful in meeting their needs. However, if the desired end goal is more

sophisticated than today’s repository capabilities, a more formal description of

behavior is required. For example, one of the loftier goals of a software repository

may be to automatically compose systems from reusable components. This is a

difficult problem, which many have tried to solve3. It is especially difficult if the

components were not originally designed for reuse. As a necessary first step

towards more sophisticated uses of a repository, behavioral descriptions must be

machine-readable in order to support automated search and discovery.

Furthermore, the behavior descriptions must be formalized and consistently applied

to each item in the repository if the intent is to automatically compose them into a

larger functioning system.

In this section, we discuss the various methods currently used to formally

express software behavior. Each of these types of representations has advantages

for certain purposes and may or may not be suitable for use in SHARE. As we

discuss the various types of representations, we include our initial assessment of

whether we should implement the method in SHARE. A key consideration in this

determination is the level of effort required to produce the descriptions. The wide

array of contributors to SHARE requires caution in dictating standards that will

impact the development processes of the asset developers. Therefore, in our

3 The proceedings from the International Symposium on Software Composition, an annual event,
provide examples of research into the breadth of research topics currently being pursued in the area
of software composition. The web site for the 2008 conference is located at
http://www.2008.software-composition.org/

- 24 -

assessment of the approaches below, we seek a balance between method

robustness and ease of implementation.

A formalized description of software behavior typically means one of two

things. We either (1) define the inputs and outputs (interfaces) of the components,

or we (2) describe the operations that take place within the component. Many

people view the latter as a decomposition of the former. In other words, they

describe the inner workings of a component by defining the inputs and outputs of a

more granular subset of components. Therefore, we have summarized the current

approaches for documenting both software interfaces as well as software behavior.

B. Interface Descriptions
Interface descriptions focus on the inputs and outputs of a component and not

the inner workings of that component. Interfaces are represented using various

methods, which vary from concentration specifically on the connect points between

two pieces of software and the types of information passed between them, to

representations of the services that a component provides.

1. Interfaces as contracts
One method for representing interfaces often employed in component

software technologies is as a contract between the client and the provider of the

implementation (Szyperski, 2002, p. 53). The contract defines the services

promised by the interface and the requirements of the client for using the interface.

It could simply consist of a set of named operations that can be invoked by clients. It

may also include pre- and post-conditions necessary for the successful use of the

interface.

A drawback for using this type of interface description as a basis for search

and discovery in SHARE is the dependency on the component’s originating software

language for determining the syntax and semantics used to describe the operations

and conditions. In SHARE’s heterogeneous environment, these types of

standardized descriptions may not be practical.

- 25 -

2. Interface Definition Languages (IDLs)
Component technology developers have developed Interface Definition

Languages (IDLs) to specify interfaces independently of the programming language

used for source code development (Clements et al., 2003, p. 241). Examples

include OMG IDL and Microsoft’s COM IDL, which are demonstrated in Figure 7.

and Figure 9. , respectively.

 interface salestax {
 float calculate_tax (in float taxable_amount);
 }

Figure 7. Sample OMG IDL Interface.
(Object Management Group, 2007)

Figure 8.

 [object, uuid(348ACF20-C9B9-11d1-ABE5-966A46661731)]
 interface IDerivedInterface : IUnknown
 {
 import "unknwn.idl";
 import "wtypes.idl";
 HRESULT Fx(int iValue);
 }

Figure 9. Example COM IDL Interface.
(Hludzinski, 1998)

The same drawback discussed for the programming language-dependent

contracts for our heterogeneous SHARE environment exists for these intermediate

languages. Rather than a dependency on the programming language, however, the

dependence lies in the chosen component technology. Since we do not intend to

force a specific component technology for all SHARE contributors, it does not make

sense to insist on interface definitions based on these IDLs.

3. Architecture Description Languages (ADLs)
Primarily used to formally represent system architectures for use during

development, Architecture Description Languages (ADLs) typically describe system

elements, their interactions and their composition rules. While there are many

different viewpoints about what constitutes an ADL (Medvidovic & Taylor, 2000, pp.

- 26 -

71-72), they always include a formal description of interfaces. ADL interface

descriptions typically define the required and provided services (messages,

operations, and variables) of a component. Some ADLs also allow for

parameterization of interfaces. Others provide additional information. Rapide uses

partially ordered sets of events, or posets, to describe behavior and component

interaction (Clements, 1996, p. 21), while MetaH explicitly formalizes the algorithms

performed within the component in a domain-specific language (Medvidovic &

Taylor, 2000, p. 79).

The advantage of using ADLs in a component specification is that the benefits

of ADL-based tools may be realized for the components. ADL tools assist the

developer by supporting architecture creation, visualization, validation, refinement,

simulation, and analysis, in addition to features that enable systematic

transformation of architectures into the implementation of a system. Many support

generation of “glue code” for components once their implementations are developed.

Additionally, ADLs are likely the appropriate level of abstraction for a heterogeneous

collection of assets, such as that found in SHARE, since they do not depend on any

decisions made about the implementation of the components.

Unfortunately the use of ADL-type descriptions comes with a cost. Because

of the robust descriptive capabilities of many ADLs, there is considerable effort

required in learning to use them. This would present a learning curve for both asset

submitters and retrievers. To minimize this problem, tools could be developed to aid

users in producing the required ADL descriptions. As an alternate solution, we are

investigating the possibility of incorporating some ADL-like descriptions into the

XML-defined metadata for the components. This will enable us to incorporate only

relevant aspects to the SHARE repository. Several new XML-based ADLs such as

XML-based Architecture Description Language (XADL) (Zhang, Ding, and Li, 2001,

pp. 561-566) and Service Oriented Architecture Description Language (SOADL) (Jia

et al., 2007, pp. 96-103) may form the basis for this development.

- 27 -

4. Graphical Notations
Interfaces can also be represented using UML or other graphical notations.

Typical graphical notations of interfaces include the “lollipop” depiction or the

expression of an interface as a UML stereotype. These are demonstrated in Figure

10.

A

AA

<<subsystem>>

<<interface>>

A

Key: Class Interface Realizes

A

AA

<<subsystem>>

<<interface>>

A

Key: Class Interface Realizes

Figure 10. UML Interfaces
(Adapted from Bass et al., p. 219)

Often these pictorial depictions of interfaces are further defined using a

formalized language such as the OMG IDL described earlier (Clements et al., 2003,

p. 241). In addition to the visual aid provided by the diagrams, the value of using

UML for interface descriptions is that many tools have been developed to read UML

and translate the models into XML depictions (XMI) and into executable code.

Model Driven Architecture products are available that enable the automatic

development of “glue code” between components from the architecture specification

(Frankel, 2003).

On the downside, an object-oriented programming development paradigm is

assumed. While some generality can by achieved by using packages and

subsystems as the main UML building blocks instead of classes and subclasses,

some argue that attempting to use UML outside of the arena for which it was

designed is more trouble than it is worth (Shaw & Clements, 2006, p. 34). This

realization, as well as our understanding that whichever description method is

- 28 -

chosen must be applied across multiple development cultures, compels us to assert

that UML may not be the best way to represent interfaces for SHARE.

5. Service Oriented Architecture and Web Services
Future deployment of the SHARE repository is likely to evolve toward the

Service-Oriented Architecture (SOA) of the GIG. SOA has been described as “an

ideal vision of a world in which resources are cleanly partitioned and consistently

represented” (Erl, 2005, p. 3) and “automation logic is decomposed into smaller

distinct units of logic … known as services” (Erl, 2005, pp. 23-33). Elements of a

service architecture are similar to SHARE concerns—the architecture typically

includes a registry of services containing descriptions of those services and

information on how to access them. Mechanisms are provided for service discovery

and for passing sufficient information about the service back to the caller so that the

service can be invoked. Advanced concepts include service orchestration for

composing higher order services from component services. The focus, of course, is

service reuse, which will potentially reduce development and maintenance while

improving software reliability and evolution agility. Figure 11. identifies a number of

service-orientation principles related to service reusability.

- 29 -

Figure 11. Service reuse and relation to service-orientation principles
(Erl, 2005, p. 313)

SOA realization may employ Web Services standards such as: Universal

Description, Discovery, and Integration (UDDI)4 for creating service registries; Web

Services Description Language (WSDL)5 for identifying operations offered by

services and describing input/output interfaces for those operations; the Simple

Object Access Protocol (SOAP)6 for accessing services and passing data to/from the

services; Web Services Business Process Execution Language (WS-BPEL)7 for

describing workflow logic for orchestration of services; OWL for Services (OWL-S)8,

an ontology of services supporting service advertisement and discovery, description

of service operation, service interoperation; Web Services Interoperability (WS-I)

profiles9 describing collections of Web services specifications at specific version

4 For UDDI information, see: http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
5 For WSDL information, see: http://www.w3.org/2002/ws/desc/
6 For SOAP information, see: http://www.w3.org/TR/soap/
7 For WS-BPEL information see: http://www.ibm.com/developerworks/library/specification/ws-bpel/
8 For OWL-S information, see: http://www.w3.org/Submission/OWL-S/
9 For WS-I information, see: http://www.ws-i.org/

- 30 -

levels; and others. It is interesting to note that the problem of describing Web

services in sufficient semantic detail to enable automatic composition of services is

very similar to the problem as describing software components for reuse.

In Web Service implementations, XML is generally used to hold the

information passed across an interface. XML schemas are extensible and easily

modified if there is a need to change the standardized format of the data. The above

standards for describing and implementing Web Services are XML-based

specifications. Additionally, XML is readily digestible by many existing tools and is

well enough understood universally to be implemented into new ones. These

advantages motivate us to propose XML as the primary notation for documenting

metadata, including the interfaces, for the SHARE component specification and

ontology project. The flexibility of XML will enable us to incorporate the necessary

information to enable capabilities similar to those enabled by ADLs, without the high

overhead cost of training the end users. Although SOA and Web Services are in a

high state of flux as industry standards mature, they present opportunity to create

software component specifications in SHARE that can be employed for a number of

purposes.

C. Modeling Software Behavior
In addition to understanding the interfaces for a component, a repository user

is interested in the functionality of the software components. In this section, we

discuss the notations currently used to describe the activities that take place within a

component.

1. UML
In addition to the structural diagramming capabilities provided by the Unified

Modeling Language (UML), several types of diagrams are used to model dynamic

aspects of the system. Methods for formal documentation of behavior provided by

UML include sequence diagrams, which may be further amplified using a constraint

language such as UML’s Object Constraint Language (OCL), collaboration

diagrams, and statecharts.

- 31 -

Sequence diagrams, or message sequence charts, show the interactions of

objects within a component in a time-ordered sequence (Larman, 2005, pp. 222-

225), as shown in the simple banking example in Figure 12. The boxes at the top of

the diagram are the objects, and the messages that take place between them are

ordered sequentially from top to bottom. Collaboration, or communication, diagrams

also show objects and their interactions, but in a more condensed format that tends

to lose the visibility of the time-ordered sequencing (see Figure 13.

State Machine Diagrams, or statecharts, illustrate events and states of

objects (Larman, 2005, pp. 485-492). As shown in Figure 14. states are

represented by the rounded rectangles, and the possible state transitions are

indicated by the arrows connecting them. Amplifying information such as actions

triggered by transitions and activities that take place during particular state

conditions is often included.

Figure 12. UML Sequence Diagram
(Bell, 2004)

- 32 -

Figure 13. UML Collaboration Diagram
(Ambler, 2007)

Figure 14. UML State Machine Diagram
(Ambler, 2006)

Each of these UML diagrams sheds some light on particular aspects of a

component’s behavior and could be used to formalize the behavioral descriptions of

artifacts incorporated into SHARE. There are a few drawbacks to this approach,

however. First, as discussed previously, the use of UML diagrams often assumes

an object oriented development paradigm, which may not be relevant for all SHARE

submitters. Second, the UML tools presented primarily assist in system

development and may not be best suited for asset discovery and retrieval.

Repository users are likely to be more interested in a more abstract view of the

system than this implementation level information provides. Finally, each of the

diagrams only captures a particular “slice,” or view, of the software’s behavior. For a

- 33 -

complete behavioral description, it would be necessary to require each type of

diagram plus additional information. This would result in a steep overhead to

develop this information for each item contained in SHARE. For these reasons, we

do not anticipate incorporating UML activity/state diagrams as the standard

representation method for software behavior. However, if these depictions are

generated as part of the software engineering development process, they should be

included as artifacts in the repository.

2. Formal Languages
In formal specification, system behavior is described using mathematical

structures. Formal notations that enable this type of specification include the Vienna

Development Method (VDM), Z (pronounced zed), and Alloy. Since the languages

are mathematically based, developers can use logic to reason about a formally

specified system and sometimes prove its correctness.

As a small example, consider Spivey’s basic birthday example shown in

Figure 15. (Spivey, 1992, pp. 3-7). The schema defines a state space for a system

that records people’s names and birthdays. The portion above the line declares the

variables known and birthday, and the portion below the dividing line provides the

relationship between variable values. Known is the set of names for which there is a

recorded birthday, and birthday provides the date of the associated birthday. The

invariant provided below the dividing line states that the set known is equal to the

domain of the partial function birthday.

- 34 -

Figure 15. Z State Space Notation
(Spivey, 1992)

To specify an operation that takes place in a system, the relationships of the

variables before and after the change are described in the bottom portion of the

operation schema. Before values are listed as the variable name (birthday), and

after values are listed with the apostrophe symbol (birthday'). In the operation

depicted in Figure 16. the operation adds a name/date pair to the previous set of all

birthdays.

Figure 16. Z Operation Notation
(Spivey, 1992)

It is evident that with even this small example, a solid understanding of set

theory, logic and other mathematical foundations are desired when learning how to

construct specifications in Z. This is one of the complaints about formal languages,

as well as one of the reasons that the use of formal specification is mostly a topic of

research and limited in practical applications to systems or portions of systems with

safety-critical reliability demands.

MIT’s Alloy project is one of the more successful attempts to make formal

methods more user-friendly (Jackson, 2006). Alloy helps the user develop the

specification by providing a visual simulation of the model. This enables users to

- 35 -

recognize when the model is incorrect, and they can then iteratively develop the

model in more detail. Alloy also includes an analyzer that automatically checks

invariants for inconsistencies in the model.

Even with these advances, however, the amount of effort required to specify

systems in these formal notations is well above the desired level of effort threshold

for the SHARE repository. Therefore, we do not intend to use formal languages to

represent software behavior of assets in SHARE.

D. Summary
For SHARE, we do not hope to solve the composition problem in the near

term. Mandating formal descriptions of software behavior for repository items does

not seem worthwhile when the composition problem remains unsolved. However,

intermediate steps towards formalized behavior descriptions will prove useful in the

near term and helpful in advancing towards far-term goals. To this end, we are

currently planning to extend the XML-defined metadata to incorporate interface

information as well as existing reference architecture information to standardize

behavioral descriptions for each artifact entered into the repository. Ongoing

advances in service composition in SOAs will also be examined for application to the

framework.

- 36 -

THIS PAGE INTENTIONALLY LEFT BLANK

- 37 -

VI. Relationships Framework (Ontology)

A. Introduction
Rich ontologies capturing the relationships of entities from multiple views

have not been applied to software repositories. However, there are many examples

of the use of ontology in the organization of data for different applications.

As an example, consider the intelligence community’s challenge of

synthesizing disparate pieces of information from widespread sources into logical

connections to form coherent pieces of knowledge. There are currently several

applications designed to collect the data and assist the analyst in drawing

relationships between the data.

Palantir Technologies has created one such software application to support

the DoD intelligence community by providing robust capabilities for managing data

from various sources10. The Palantir tool is based on user-defined ontologies and

supports multiple representation and analysis tools. The graphical representations

depict the data items and their relationships with each other, based on the

underlying ontology. The analysis tools can be used to form logical links between

entities in the database and to detect patterns and irregularities in the data. This rich

environment enables multiple search techniques including keywords, browsing

through data tables, and graphical views of the database content based on the

relationships of the entities described in the ontology (see Figure 17.).

For the SHARE research project, these capabilities serve as examples of

potential utility of the repository framework by demonstrating the power of formalized

semantics. When the framework is in place, technologies such as these can be

exploited to gain flexibility in the search options described previously.

10 For more information about Palintir products, see: http://www.palantirtech.com/

- 38 -

Figure 17. Palantir Graphical Interface
(Gordon-Schlosberg, 2008)

Similar examples of the use of ontologies to support data analysis exist in

other domains, particularly in the medical field. Some background on current and

emerging standards for describing rich semantics in data relevant to the SHARE

framework is provided in this section.

B. Semantic Web Techniques
The Semantic Web stack was shown in Figure 3. Several of the components

pictured there contribute to stronger semantic description of Web-based resources,

as described below.

1. Data Interchange: Resource Description Framework (RDF)
RDF is a language for stating assertions in the form of subject-predicate-

object triplets. Each of the elements in an RDF statement is an abstract Web

- 39 -

resource identified by a URI. RDF and its schema language (RDFS, see below) will

be investigated for applicability to the SHARE framework to describe taxonomies

(class hierarchies) supporting inference and search (Alesso & Smith, 2006). We will

also explore the possible benefits of creating RDF expressions for storing SHARE

repository data content.

2. Query: SPARQL
The lower layers of the Semantic Web stack provide the ability to describe

information (metadata and schemas) and to express knowledge (assertions). Query

languages provide a means to access information. The XML Query language is

used to search XML documents by exploiting the hierarchical tree structure of the

documents (XPath expressions). The SPARQL Protocol and RDF Query Language

provide a means to search RDF expressions by exploiting the subject-predicate-

object graph structure of the expressions (pattern matching).11 If RDF structures

prove valuable for describing information in the SHARE repository, the use of

SPARQL and other query techniques will be explored.

3. RDF Schema (RDFS)
RDF provides the means to make statements about Web resources. RDF

Schema (RDFS) provides an XML vocabulary to define classes and subclass

relationships (taxonomies) as well as to define properties associated with classes

(ontologies) (Alesso & Smith, 2006). RDFS will be explored for use in description of

taxonomies and, as we will see below, as part of the specification of ontologies for

the SHARE framework using the Web Ontology Language (OWL).

4. Ontology: Web Ontology Language (OWL)
OWL extends RDF/RDFS constructs to provide more precise description of

classes, subclasses, and relationships among classes (properties). OWL adds the

capability to define local scope of properties, disjointness of classes, Boolean

combinations of classes, cardinality restrictions, special characteristics of properties

11 For more information on this language, see: http://www.w3.org/2001/sw/DataAccess/

- 40 -

(e.g., functional, transitive, symmetric), and other aspects not expressible with

RDF/RDFS (Alesso & Smith, 2006). In addition to using the language to describe

classes and relationships, OWL also describes instances (members) of classes,

which allows creation of knowledge bases containing information about the software-

hardware assets in SHARE. OWL includes three sublanguages (OWL Full, OWL DL,

and OWL Lite), providing three levels of logical expressivity and resultant

computational trade-offs. OWL Lite is the simplest of the three, excluding the ability

to define enumerated classes, disjointness statements, and arbitrary cardinality

(Alesso & Smith, 2006). OWL DL (Description Logic) permits expression of a subset

of first order logic that guarantees decidability (determining an answer in finite time).

If determined to be appropriate for our purposes, we will use OWL DL for ontology

development for the SHARE framework. Use of OWL will maximize utility by

software applications, including use of openly available reasoning engines that can

be used to check for ontology consistency and to make inferences about instances

in the asset knowledge base.

5. Rule: Rule Interchange Format (RIF)
Rules and rule-based systems provide additional expressiveness in

describing the logic of a system. Rules permit software to infer a conclusion from a

premise (Alesso & Smith, 2006). Rules may be used in the formalized specification

of software assets in the repository to enrich their description, particularly if there is a

need to encode business rules, policies, and processes appropriate to the repository

(e.g., role-based access).

6. Unifying Logic and Proof
The use of the well-established Web-based conventions in the information

technology community provides a basis for application of a variety of common logical

computations. We will be able to employ existing products that can operate on the

semantic descriptions using provably correct methods.

7. Cryptologic
Cryptologic aspects of the Semantic Web stack cut across all the layers,

supporting such functionality as authentication, encryption, and digital signature

- 41 -

(Eastlake & Niles, 2003). We will not address this area directly in the work, but we

will create the semantic basis for implementation of methods such as role-based

access and other controls on information content in the repository.

8. Trust
Trust is being able to anticipate the actions of a system and have a

reasonable expectation that the system will act correctly (i.e., as intended) (Michael,

2008). Trust is often established and maintained through transparency. One of the

advantages of the use of the Semantic Web practices is visibility of the information

through its description in metadata, semantic descriptions, rules, and

computationally sound logic. Clearly, users of the repository will rely on the

trustworthiness of the content when obtaining information or artifacts that support

new developments. While we will not address this aspect of the problem directly, in

the component specification and ontology development, our goal is to make the

information as explicit and accessible as possible to humans and machines to

promote this level of the Semantic Web stack.

9. User Interface & Applications
Well-defined syntax and semantics for description of metadata, taxonomies,

and ontology for the SHARE framework will facilitate development of software

applications and user interfaces for working with the repository. By expressing the

SHARE component specification and ontology using common Semantic Web

elements, the products of our current research will readily support development of

various applications, including Web Services in an SOA, while also providing a basis

for future applications employing emerging Semantic Web Services technologies.

C. Semantic Search
Semantic search methods “augment and improve traditional search results by

using not just words, but meaningful concepts” (Alesso & Smith, 2006, p. 201). One

prominent approach, Latent Semantic Indexing, considers documents that share

many words in common to be semantically close, without any understanding of the

“meaning” of the words. As introduced earlier in this report, other researchers at

- 42 -

NPS are developing semantic search capabilities (ReSEARCH) for the SHARE

repository that will use the WordNet database to extend this approach to include

related words (synonyms, part-of relationships, etc.). For even greater formulation of

context, the metadata, taxonomy, and ontology specifications for the SHARE

framework discussed above will provide domain-specific semantics that should

enable more precise discernment of relevance in the searches. As the formalized

semantics of the component specification and ontology are developed, the

formalisms will be provided to the ReSEARCH developers to determine if

improvements in search precision can be achieved.

D. Summary
Enriched semantic specification of the assets in the SHARE repository will

enable users to more readily find resources that meet their need in their context.

Extensive work in the Web community is providing tools and techniques that can be

applied to the SHARE framework. We will select and apply appropriate techniques to

meet the goals of the framework development.

- 43 -

VII. Share Framework Development Approach

A. Introduction
Based on our vision for the framework and the related existing technologies

we have summarized, in this section we lay out our intended path forward for

developing the SHARE repository framework.

B. SHARE Metadata
An initial list of required asset information has been developed by the SHARE

Program Office at Naval Surface Warfare Center, Dahlgren, VA. For our research,

we will begin by developing a schema based on this initial list and complement the

metadata fields with necessary information for filling out the framework. To fill out

the data set, we will evaluate known good metadata examples, and we will pull

relevant information into the SHARE metadata. We will then ensure that the

metadata includes all necessary information to place the artifact in the appropriate

context based on the ontology. In order to promote maximum exposure of SHARE

contents, we will also ensure that minimum requirements of DDMS are satisfied.

Based on all of these considerations, we will develop a practical metadata schema.

This will most likely include a core data set and variations for different types of

artifacts.

In order to evaluate the completeness of the metadata, we intend to

investigate case studies for each phase of the software development cycle. As

stated previously, repository user needs vary greatly depending on what the user’s

needs are at the time of search. Therefore, we are constructing case studies that

capture the potential needs based on the user’s current development activities. For

each of these case studies, the metadata will be evaluated to ensure inclusion of all

appropriate information for enabling retrieval decisions.

- 44 -

C. SHARE Software Behavior Representation
For the SHARE software behavior representation, we suspect the overall goal

of implementing formalized representations of software behavior, which are

standardized across all systems, is not feasible in the short term. While we intend to

keep the loftier goal in mind, it is likely that an interim step towards standardization

of formal software behavior representation will be required.

One near-term solution may be to use available domain information that

standardizes descriptions of software functionality. For example, the Common

Systems Function List (CSFL), Common Operational Activities List (COAL), and

Common Information Element List (CIEL) are leadership-endorsed listings of combat

system functionality that can be utilized as an initial characterization of software

behavior. We will investigate the use of a subset of these listings in the

development of taxonomies for the SHARE repository framework. If we require

asset submitters to state the functionality of the components in these terms, we can

then build the tools to guide users in selecting desired behavior in the same terms.

We will also explore characterization of software assets based on current and

emerging Web Services (e.g., WSDL) and Semantic Web Services (e.g., WS-BPEL,

OWL-S) approaches.

D. SHARE Relationship Framework (Ontology)
The ontology for SHARE will be based on several types of relationships

between the items in the repository and each other, as well as with relevant domain

architectural descriptions and other information. The types of relationships we are

exploring are the artifact’s place in the software engineering lifecycle, its

architectural fit in its original system, its architectural fit in any systems in which it

was subsequently used, identification of the component’s fit in the Surface Navy

Open Architecture reference architecture, and the semantic relationships of various

documents in the repository (based on the ReSEARCH work). Each type of

relationship will be examined to determine its appropriate representation form (RDF,

OWL, Rules, etc.). The goal is to determine representation forms that will best

- 45 -

enable tool development supporting the types of searches described in the previous

chapters based on the ontology provided.

VIII. Future Work

Current research will describe the component specification and ontology

desired for the SHARE repository. Further work will be necessary to implement the

framework and develop a tool suite that will enable the described search capabilities.

In the SHARE implementation, additional repository features can be added, such as

an Amazon-like “similar results” feature that points people with similar problems to

the retrieval of the same files (and other similar recommendations found in Johnson

(2007). In the long term, further work will be required if the intent is to eventually

enable automated composition of a system based on reusable components. As

mentioned previously, a starting point to accomplish this goal may be to standardize

a formal behavior representation of the repository contents.

- 46 -

THIS PAGE INTENTIONALLY LEFT BLANK

- 47 -

IX. Summary

This research will result in a component specification and ontology designed

to support a tool suite for enabling advanced search and discovery solutions

supporting reuse of repository artifacts for every phase of the software lifecycle. We

have provided an overview of our intended framework, discussed relevant related

technologies and initiatives, and laid out our plan for completing the repository

development. We also discussed some possibilities for future work beyond the

scope of this initial project.

- 48 -

THIS PAGE INTENTIONALLY LEFT BLANK

- 49 -

List of References

Alesso, H. P., & Smith, C. F. (2006). Thinking on the web: Berners-Lee, Gödel, and
Turing. Hoboken, NJ: John Wiley & Sons, Inc.

Ambler, S. (2007). UML2 Communication Diagramming Guidelines. Retrieved
March 15, 2007, from
http://www.agilemodeling.com/style/collaborationDiagram.htm

Ambler, S. (2006). Introduction to UML2 State Machine Diagrams.. Retrieved March
15, 2007, from
http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice (2nd

ed.). Boston: Addison-Wesley.

Bell, D. (2004). IBM: UML’s sequence diagram. Retrieved March 15, 2007, from,
http://www.ibm.com/developerworks/rational/library/3101.html

Clements, P. (1996). A survey of architecture description languages. Proceedings
from the 8th International Workshop on Software Specification and Design,
Schloss Velen, Germany, 16-25.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., &
Stafford, J. (2003). Documenting software architectures: Views and beyond.
Boston: Addison-Wesley.

Comprehensive PERL Archive Network (CPAN). (2007). CPAN. Retrieved January
16, 2007, from http://www.cpan.org

Daconta, M. C., Obrst, L. J., & Smith, K. T. (2003). The semantic web: A guide to the
future of xml, web services, and knowledge management. Indianapolis: Wiley
Publishing, Inc.

Department of Defense Chief Information Officer (2003, May 9). Net-centric data
sharing strategy. Washington DC

Deputy Assistant Secretary of Defense (2007). Department of Defense Discovery
Metadata Specification (DDMS) (Version 1.4.1). Deputy Chief Information
Office.

Eastlake III, D. E., & Niles, K. (2003). Secure XML: The New Syntax for Signatures
and Encryption. Boston: Addison-Wesley.

Erl, T. (2005). Service-oriented architecture: Concepts, technology, and design.
Upper Saddle River: Pearson Education, Inc.

- 50 -

Frankel, D. S. (2003). Model driven architecture: Applying MDA to enterprise
computing. Indianapolis: Wiley Publishing, Inc.

Gordon-Schlosberg, A. (2007) Palantir screenshots in the wild: Swing Sightings.
Retrieved February 12, 2008, from
http://blog.palantirtech.com/2007/09/11/palantir-screenshots/.

Hludzinski, B. (1998, August). Understanding interface definition language:A
developer’s survival guide. Retrieved March 7, 2008, from
http://www.microsoft.com/msj/0898/idl/idl.aspx

Jackson, D. (2006). Software abstractions. Boston: MIT Press.

Jia, X., Ying, S., Zhang, T., Cao, H., & Xie, D. (2007). A new architecture description
language for service-oriented architecture. Proceedings from the 6th
International Conference on Grid and Cooperative Computing, Washington
DC, 96-103.

Johnson, J. (2007, October). SHARE repository component specification: Needs
assessment. Technical Report, Monterey, CA: Naval Postgraduate School

Larman, C. (2005). Applying UML and patterns: An introduction to object-oriented
analysis and design and iterative development (3rd ed.). Upper Saddle River:
Prentice Hall.

Medvidovic, N., & Taylor, R. (2000). A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software
Engineering, 26(1),70-93.

Michael, B. (2008, March 19). Perspectives, practices, and the future of building
highly dependable and trustworthy systems. Software Engineering
Presentation. Naval Postgraduate School, Monterey, CA.

Object Management Group. (2005). Reusable asset specification, Version 2.2.
Retrieved January 29, 2008, from
http://www.omg.org/technology/documents/formal/ras.htm

Object Management Group. (2007). OMG IDL: Details. Retrieved February 22, 2008,
from http://www.omg.org/gettingstarted/omg_idl.htm

Simventions (2008, January 22). Modeling and simulation (M&S) community of
interest (COI) discovery metadata specification (MSC-DMS) (Version 1.0.1).
Washington, DC: DoD Modeling and Simulation Coordination Office (M&S
CO).

Sarkar, M., & Brown, H. (1993). Graphical fisheye views. Communications of the
ACM, 37, 73-83.

- 51 -

Shaw, M., & Clements, P. (2006). The golden age of software architecture. IEEE
Software, 23(2), 31-39.

Spivey, J. (1992). The Z NOTATION: A reference manual (2nd ed.). Oxford:Prentice
Hall.

SourceForge. (2007). SourceForge.net: Welcome to SourceForge.net. Retrieved
October 8, 2007, from www.sourceforge.net

Szyperski, C. (2002). Component software: Beyond object-oriented programming,
(2nd ed.). New York: Addison-Wesley.

World Wide Web Consortium (W3C). (1994). Semantic Web Stack. Retrieved
February 26, 2008, from www.w3.org/2007/03/layerCake.png

WordNet. (2006). A lexical database for the English language. Retrieved March 25,
2007, from http://wordnet.princeton.edu/

Zhang, B., Ding, K., & Li, J. (2001). An XML-message based architecture description
language and architectural mismatch checking. Proceedings from the 25th
Annual International Computer Software and Applications Conference,
Washington, DC, 561-566.

- 52 -

THIS PAGE INTENTIONALLY LEFT BLANK

- 53 -

2003 - 2008 Sponsored Research Topics

Acquisition Management

� Software Requirements for OA
� Managing Services Supply Chain
� Acquiring Combat Capability via Public-Private Partnerships (PPPs)
� Knowledge Value Added (KVA) + Real Options (RO) Applied to

Shipyard Planning Processes
� Portfolio Optimization via KVA + RO
� MOSA Contracting Implications
� Strategy for Defense Acquisition Research
� Spiral Development
� BCA: Contractor vs. Organic Growth

Contract Management

� USAF IT Commodity Council
� Contractors in 21st Century Combat Zone
� Joint Contingency Contracting
� Navy Contract Writing Guide
� Commodity Sourcing Strategies
� Past Performance in Source Selection
� USMC Contingency Contracting
� Transforming DoD Contract Closeout
� Model for Optimizing Contingency Contracting Planning and Execution

Financial Management

� PPPs and Government Financing
� Energy Saving Contracts/DoD Mobile Assets
� Capital Budgeting for DoD
� Financing DoD Budget via PPPs
� ROI of Information Warfare Systems
� Acquisitions via leasing: MPS case
� Special Termination Liability in MDAPs

- 54 -

Human Resources

� Learning Management Systems
� Tuition Assistance
� Retention
� Indefinite Reenlistment
� Individual Augmentation

Logistics Management

� R-TOC Aegis Microwave Power Tubes
� Privatization-NOSL/NAWCI
� Army LOG MOD
� PBL (4)
� Contractors Supporting Military Operations
� RFID (4)
� Strategic Sourcing
� ASDS Product Support Analysis
� Analysis of LAV Depot Maintenance
� Diffusion/Variability on Vendor Performance Evaluation
� Optimizing CIWS Lifecycle Support (LCS)

Program Management

� Building Collaborative Capacity
� Knowledge, Responsibilities and Decision Rights in MDAPs
� KVA Applied to Aegis and SSDS
� Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
� Terminating Your Own Program
� Collaborative IT Tools Leveraging Competence

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

- 55 -

Initial Distribution List

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944; Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013 2
Naval Postgraduate School, Monterey, CA 93943-5100

3. Research Office, Code 09 1
Naval Postgraduate School, Monterey, CA 93943-5138

4. William R. Gates 1
Dean, GSBPP
Naval Postgraduate School, Monterey, CA 93943-5138

5. Stephen Mehay 1
Associate Dean for Research, GB
Naval Postgraduate School, Monterey, CA 93943-5138

6. Jean Johnson 1
Research Assistant, Systems Engineering Department
Naval Postgraduate School, Monterey, CA 93943-5138

7. Curt Blais 1
Research Associate, MOVES Institute
Naval Postgraduate School, Monterey, CA 93943-5138

Copies of the Acquisition Sponsored Research Reports may be printed from our web
site www.acquisitionresearch.org

